
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A DEMONSTRATION OF THE SUBVERSION THREAT:

FACING A CRITICAL RESPONSIBILITY IN THE
DEFENSE OF CYBERSPACE

by

Emory A. Anderson, III

March 2002

 Thesis Advisor: Dr. Cynthia Irvine
 Co-Advisor: Dr. Roger Schell

This thesis was completed in cooperation with the Institute for Information
Superiority and Innovation.

Approved for public release; distribution is unlimited

Report Documentation Page

Report Date
29 Mar 2002

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
A Demonstration of the Subversion Threat: Facing a
Critical Responsibility in the Defense of Cyberspace

Contract Number

Grant Number

Program Element Number

Author(s)
Anderson, Emory

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Naval Postgraduate School Monterey, California

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
71

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
A Demonstration of the Subversion Threat:
Facing a Critical Responsibility in the Defense of Cyberspace
6. AUTHOR(S) Anderson, Emory A., III

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 This thesis demonstrates that it is reasonably easy to subvert an information system by inserting software artifices
that would enable a knowledgeable attacker to obtain total and virtually undetectable control of the system. Recent security
incidents are used to show that means, motive, and opportunity exist for an attack of this nature. Subversion is the most
attractive option to the professional attacker willing to invest significant time and money to avoid detection and obtain a
significant payoff.
 The objective here is to raise awareness of the risk posed by subversion so that the decision makers responsible for
the security of information systems can make informed decisions. To this end, this work provides a complete demonstration of
a subverted system. It is shown how a few lines of code can result in a very significant vulnerability. The responsibility to
defend information systems cannot adequately be met without considering this threat.
 Addressing this threat gets to the very nature of the security problem, which requires proving the absence of
something – namely, a malicious artifice. Several techniques for demonstrating security are shown to be inadequate in the face
of this threat. Finally, a solution is presented with a proposal for future work.

15. NUMBER OF
PAGES

71

14. SUBJECT TERMS System Subversion, Computer Security, Artifice, Verifiable Protection

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

This thesis was completed in cooperation with the Institute for Information
Superiority and Innovation.

A DEMONSTRATION OF THE SUBVERSION THREAT:

FACING A CRITICAL RESPONSIBILITY IN THE DEFENSE OF
CYBERSPACE

Emory A. Anderson, III

Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author:
Emory A. Anderson, III

Approved by:

Dr. Cynthia Irvine, Thesis Advisor

Dr. Roger Schell, Co-Advisor

Christopher Eagle,Chair
Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis demonstrates that it is reasonably easy to subvert an information

system by inserting software artifices that would enable a knowledgeable attacker to

obtain total and virtually undetectable control of the system. Recent security incidents

are used to show that means, motive, and opportunity exist for an attack of this nature.

Subversion is the most attractive option to the professional attacker willing to invest

significant time and money to avoid detection and obtain a significant payoff.

The objective here is to raise awareness of the risk posed by subversion so that the

decision makers responsible for the security of information systems can make informed

decisions. To this end, this work provides a complete demonstration of a subverted

system. It is shown how a few lines of code can result in a very significant vulnerability.

The responsibility to defend information systems cannot adequately be met without

considering this threat.

Addressing this threat gets to the very nature of the security problem, which

requires proving the absence of something – namely, a malicious artifice. Several

techniques for demonstrating security are shown to be inadequate in the face of this

threat. Finally, a solution is presented with a proposal for future work.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE OF STUDY..1
B. DEFINITION ...1
C. HISTORICAL BACKGROUND..2
D. THE PROFESSIONAL ATTACKER ...5
E. CONTRAST WITH OTHER ATTACK METHODS..................................6
F. WHY DECISION MAKERS SHOULD SERIOUSLY CONSIDER

THE THREAT OF SUBVERSION..8
G. OUTLINE ...9

II. HIGH LEVEL DISCUSSION OF THE NETWORK FILE SERVER (NFS)
EXPERIMENT ..11
A. HIGH LEVEL CONSIDERATIONS...11

1. General..11
2. Selecting the Method of Subversion and the Target System..........11
3. Selecting a Suitable Attack Demonstration12

B. ARTIFICE DESIGN AND INTEGRATION INTO THE
OPERATING SYSTEM..15
1. Artifice Function ..16

C. THE SUBVERTED SYSTEM IN OPERATION18
D. CHAPTER SUMMARY..19

III. HIGH LEVEL DISCUSSION OF SSL SUBVERSION...21
A. OVERVIEW OF A POSSIBLE SSL SUBVERSION.................................21
B. CHAPTER SUMMARY..23

IV. DETAILED DESCRIPTION OF THE NFS EXAMPLE25
A. LINUX IMPLEMENTATION OVERVIEW..25

1. Artifice Implementation ..26
2. The Network File Server as a Target ...29

B. CHAPTER SUMMARY..29

V. EVALUATING SYSTEM SECURITY IN THE FACE OF ARTIFICES31
A. TECHNIQUES FOR FINDING AN ARTIFICE..31

1. Design and Implementation Phase Subversion31
2. Distribution, Maintenance, and Support ...33

B. PROVING THE PRESENCE OR ABSENCE OF AN ARTIFICE34
1. Source Code Inspection Will Fail to Reveal an Artifice.................34
2. Security Test and Evaluation (ST&E) Will Fail to Reveal an

Artifice ..35
C. CHAPTER SUMMARY..37

VI. LIMITING THE RISK OF SUBVERSION IN INFORMATION SYSTEMS39
A. ANALYZING THE THREAT MODEL..39

 vii

B. SOFTWARE ENGINEERING, OBEJCT-ORIENTED
PROGRAMMING (OOP), AND DEVELOPMENTAL ASSURANCE
APPROACHES..41

C. VERIFIABLE PROTECTION...41
1. Properties of Verifiable Protection...43
2. Requirements for Verifiable Protection...44

D. CHAPTER SUMMARY..45

VII. CONCLUSIONS AND FUTURE WORK...47

LIST OF REFERENCES..51

APPENDIX...53

INITIAL DISTRIBUTION LIST ...55

 viii

LIST OF ACRONYMS

CC Common Criteria
COTS Commercial off-the-shelf
CVE Common Vulnerabilities and Exposures
EAL Evaluated Assurance Level
euid effective user indentifier
fsuid file system user identifier
FTLS Formal Top Level Specification
GNU GNU’s Not UNIX
GPG GNU Privacy Guard
IP Internet Protocol
IT Information Technology
MD5 Message Digest 5 hash algorithm
NCSC National Computer Security Center
NFS Network File Server
NTFS Windows NT File System
PGP Pretty Good Privacy
PKI Public Key Infrastructure
RM Reference Monitor
RPC Remote Procedure Call
RVM Reference Validation Mechanism
SMB Server Message Block
SSE-CMM System Security Engineering – Capability and Maturity Model
SSL Secure Sockets Layer
ST&E Security Test and Evaluation
TCP Transmission Control Protocol
TCSEC Trusted Computer Security Evaluation Criteria
UDP User Datagram Protocol
UID User Identifier
VFAT Virtual File Allocation Table
VFS Virtual File System

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

EXECUTIVE SUMMARY

“Aesop, who used animals to illustrate human foibles, told of the
eagle that died from an arrow, the shaft of which had been feathered with
one of its own plumes, to make the point that ‘We often give our enemies

the means of our own destruction.’ ”1

Information technology has made possible some of the most astonishing

achievements in the history of the modern world. Its usefulness has paved the way for its

introduction into nearly every facet of society to the point that we are now inescapably

dependent upon it. The ironic fact that that which gives us a significant edge over our

adversaries also carries within it one of our most ominous vulnerabilities is now widely

accepted and has resulted in an effort known as Critical Infrastructure Protection (CIP).

Information security plays an important role in CIP but one significant threat that has

been ignored for nearly twenty years is the threat of information system subversion.

System subversion involves the clandestine and methodical undermining of a system by

planting artifices (trap doors) in it that bypass its security controls. This method of attack

is the choice of the professional attacker (such as a nation state or a large company

engaging in corporate espionage) who gains access at some point in the system lifecycle

and plants the artifice. This artifice grants only those with knowledge of both its

presence and how to trigger it, virtually undetectable and potentially unrestricted access

to the system. The professional attacker is motivated by the prospect of significant

payoff that may not be realized until several years in the future – often at a time when the

victim’s dependence upon the proper functioning of the system is crucial.

Perhaps the closest relative to subversion is the Trojan Horse attack in which the

attacker sends the victim a program in the hopes that the victim will run it on his system.

When he does so, the program covertly performs some additional malicious function.

There are three primary factors that distinguish this from subversion. First, the Trojan

Horse requires a legitimate user to run it while the artifice in subversion does not.

Second, the Trojan Horse program exploits the level of privilege associated with the

individual that runs it whereas the artifice (typically embedded in the system) simply

1 From Grant, P. & Riche, R. (1983). The Eagle’s Own Plume. Proceeding of the U. S. Naval
Institute, July, 1983.

 xi

bypasses these privilege checking controls. Finally, the artifice in subversion typically

has some type of activation and deactivation mechanism.

Recent trends indicate recognition of the importance of assurance in information

systems, but none of the commonly available commercial systems or solutions even

approach the level of assurance required to address the subversion threat. Firewalls,

intrusion detection systems, encryption, and other similar defense layers all fail in the

face of subversion. Moreover, methods used to assess the security of systems such as

security test and evaluation (ST&E), red teams (tiger teams), and penetration testing are

unable to protect against this threat. The only known way to protect against the

subversion threat is with high assurance systems that offer verifiable protection. This is

not the type of assurance being associated with the majority of modern commercial “high

assurance” systems, but the type found in systems designed formally and evaluated

through formal audits of the system against a sound set of criteria. Systems built in such

a way offer the unique ability to verify that the security mechanisms are both sound and

complete even after they have been built.

Press reports over the past year provide ample evidence that the means, motive,

and opportunity for an attack of this nature exist. Certainly, decision makers could be

considered negligent if they ignore the threat of subversion in systems upon which the

defense and critical infrastructure of the United States depend. The computer security

community understood the subversion threat as early as the 1970’s and by the mid

1980’s, vendors were building systems with assurances to defend against it. However,

these systems saw little application (even in the Department of Defense) as the society

was not yet so inescapably dependent on information technology, the threat was not so

mature, and there were strong pressures to use products of the commercial market that

favored functionality and features over security and assurance. There has been very little

work in this area since this time.

This thesis demonstrates that it is relatively easy to subvert a system (given access

at some point during its lifecycle) in a way that can cause significant harm and includes

two example artifices (one of which is implemented). Finally, it points out that lessons

learned in designing systems to withstand subversion are in danger of being lost and

proposes a project to educate and train a new generation of security professionals.

 xii

I. INTRODUCTION

A. PURPOSE OF STUDY
The purpose of this paper is to heighten awareness of the threat of system

subversion and demonstrate that, unless this threat is addressed where appropriate, the

responsibility to provide proper security cannot adequately be met. To this end, a brief

examination of the threat is provided followed by several real world and publicly

reported incidents that together demonstrate the means, motive, and opportunity for an

adversary to conduct this type of attack against the United States. Finally, a working

example of a subverted operating system is constructed by placing an artifice in the

kernel. The effect that this might have on the larger system is demonstrated in the form

of a Network File Server, which will allow the attacker who has knowledge of the artifice

full access to the server.

The security problem is unique and difficult. It involves proving not only the

presence of proper functional security controls, but also proving the absence of anything

that can undermine these controls. After-the-fact testing and certification cannot provide

the level of protection require to counter subversion. The only way to counter this threat

is to build systems in such a way that the insertion of an artifice is both detectable and is

guaranteed to be discovered during formal audits of the system against a sound set of

criteria. This approach will be presented following the examples.

B. DEFINITION

Meyers (1980) defines subversion of a computer system as “… the covert and

methodical undermining of internal and external controls over a system lifetime to allow

unauthorized or undetected access to system resources and/or information.” At the time

of this writing, an increase in reliance on commercial off-the-shelf (COTS) automated

data processing systems was cited as cause for concern over the protection of information

of varying degrees of sensitivity in the presence of multiple users with varying levels of

trustworthiness. The contemporaneous solution to this “classical security problem” was

the security kernel – a small analyzable portion of a trusted operating system that was

protected and responsible for enforcing security policy on the system. It was noted that

 1

unless the threat of subversion was addressed, this security kernel technology could never

hope to provide a solution to the security problem.

The environment has changed significantly since 1980. In many ways, Meyers

foretold the environment that exists today. Products are vastly more complex and

interrelated making it much easier to hide artifices (Anderson, 1972). Systems (such as

web servers) now provide simultaneous service to large numbers of completely unknown

and untrusted users. Reliance on information technology (IT) has skyrocketed - every

individual and almost every aspect of modern life are affected by computers in some way

even if not in a direct relationship. There is so much that must be considered when

building a system that it is easy to overlook the most fundamental issues.

For instance, lessons had been learned in the early 1970’s that no ad hoc fix or

security patch could provide security if the operating system could not be trusted

(Anderson, 1972 and Schell, Downey, and Popek, 1973). While it is uncommon today

for a vendor to be foolish enough to claim a silver bullet solution, there are a significant

number of these ad hoc security products available to throw at the problem. One can

easily be lulled into a false sense of security by employing an assortment of products in a

so-called “layered defense.” However, the lessons of the past must not be forgotten.

High assurance systems (i.e. systems with “verifiable protection”) are the only known

technology that can address the threat of subversion and subversion is a threat that

deserves attention.

C. HISTORICAL BACKGROUND
The focus of concern in the field of computer and information security has

meandered through a seemingly infinite list of threats. In the beginning, computers ran a

single program and the threat could be addressed with physical controls. Operating

systems brought capabilities to reduce the time that these expensive machines stood idle

by enabling them to share resources and run several programs “simultaneously.”

Protecting data and resources became a much more difficult problem in these shared-use

systems as indicated in the Air Force Computer Technology Planning Study (Anderson,

1972):

 2

... The nature of shared-use multilevel computer security systems presents
to a malicious user a unique opportunity for attempting to subvert through
programming the mechanism upon which security depends (i.e., the
control of the computer vested in the operating system)…The threat that a
single user of a system operating as a hostile agent can simply modify an
operating system to by-pass or suspend security controls, and the fact that
the operating system controlling the computer application(s) is developed
outside of USAF control, contribute to the reluctance to certify (i.e., be
convinced) that contemporary systems are secure or even can be secured.

The security kernel was offered as a proposed solution by providing domain

separation and addressing the issues of object reuse, covert channels, and other avenues

of attack on confidentiality and integrity that resulted from this development. Anderson

(1972) describes the security kernel as follows:

The objective for a security kernel design is to integrate in one part of an
operating system all security related functions. This is for the purpose of
being able to protect all parts of the security mechanism, and to apply
certification techniques to the design.

This report also introduced the concept of the Reference Monitor (RM) the function of

which is to validate that all references made by subjects (active entities in the system) to

objects (passive entities) are authorized for the specific mode of access requested. In

other words, whenever a process requests access of a particular mode (e.g. read/write) the

RM must validate that the subject is authorized to reference the object in that mode. The

report introduced the term Reference Validation Mechanism (RVM) as the

implementation of the concept and stipulated the following three enduring requirements:

• The RVM must be tamper proof;

• The RVM must always be invoked; and

• The RVM must be small enough to be the subject of analysis and tests to
assure that it is correct.

The RVM would be one component of the security kernel.

In 1979, Air University Review published an article (Schell, 1979), which

presented evidence of weaknesses in the security controls of contemporaneous systems

that were assumed to be secure by operators. The author compared the use of these

systems under the false assumption that they were secure to Japan and Germany’s

confidence that their encryption systems could not be broken in World War II.

 3

In the 1980’s, the DoD conducted more studies to address the computer security

problem. In 1983, “The Eagle’s Own Plume” (Grant and Riche), illustrated the threat in

the context of the increased use of electronics and computers in Naval Weapon’s systems.

The article provided hypothetical examples of how artifices inserted into weapons or

weapon support systems by U.S. adversaries might cause failed communications and

erroneous presentation of information and how this could negatively impact a conflict

scenario. At approximately the same time, criteria for evaluating the security assurances

of computer systems were being developed. These criteria were published in 1985 in the

Department of Defense Trusted Computer Evaluation Criteria (TCSEC) or “Orange

Book” (DOD 5200.28-STD, 1985). The RVM discussed above was incorporated into the

criteria beginning at Division B (Mandatory Protection). Subsequent work resulted in an

entire series of publications (commonly called the “Rainbow Series”) which extended the

criteria for application to networks and databases and amplified various aspects of

functional and assurance requirements.

Increasingly, systems were linked together into networks and ultimately the

Internet in the 1990’s. With the Internet in particular, the number and sources of threats

soared as hardware decreased in cost, the pace of software product development

accelerated, and the number of users with the ability to connect within the network

increased. To counter these new threats, cryptography, intrusion detection systems,

virtual private networks, and firewalls took the forefront as the must-have tools for

protecting information systems.

The end of this cycle appears to be nowhere in sight; new technologies and

products constantly emerge to address the new threats that appear in the rear-view mirror

only to be followed by yet another newly discovered vulnerability or exploitation

technique. The recent creation of the Common Vulnerabilities and Exposures (CVE) List

(http://www.cve.org) is testament to the magnitude of the problem – vulnerabilities are so

prevalent, that a vulnerability taxonomy and management system is required just for the

security community to communicate effectively about the problem.

Yet, with all this attention to computer and network security, with all the various

security technology available today, the threat of subversion remains unchecked and

 4

largely ignored. These new technologies simply cannot counter the threat of subversion.

Loscocco, et al (1998) provide excellent examples of how these technologies fail to

provide protection when it is falsely assumed that the underlying system is secure. It is

not the case that we do not know how to address this threat. In fact, since the early

1970’s, we have had available technology and procedures that, if applied properly, will

eliminate the most serious threats of subversion. These will be discussed later.

D. THE PROFESSIONAL ATTACKER

Subversion is the technique of choice for the professional attacker. In order to

fully understand the subversion threat and appreciate why it deserves attention, the

distinction between the professional and amateur attacker must be understood. The

professional attacker is distinguished from the amateur by objectives, resources, access,

and time. He is very concerned about avoiding detection and this will therefore be one

of his primary objectives. Amateur attackers are often motivated by a desire for notoriety

or simple curiosity as much as for gaining access. The problem for them becomes

maintaining selective anonymity relative to the observers – allowing some observers to

attribute the attack to them while denying the same ability to law enforcement or other

authorities.

The professional will often be well funded and have adequate resources to

research and test the attack in a closed environment to make its execution flawless. A

flawless attack will attract less attention than one that must be mounted numerous times

due to errors or bugs.

As described by Meyers (1980), the professional attacker is one who understands

the system lifecycle. Using this knowledge, he may construct a subverted environment

by controlling the efforts of a development team without the individuals realizing that

they are involved in the subversion activity. In a large system with complex

dependencies between modules (as is common in today’s operating systems) the

opportunities for this approach are clearly evident.

Coordinated attacks are also the mark of a professional. These types of attacks

are launched from multiple systems simultaneously at a single target and can achieve a

big pay-off in a short period of time. They also complicate efforts to discover the origin

 5

of the attack, helping to conceal the identity of the attacker. The distributed denial of

service (DDOS) attacks in which large numbers of vulnerable system are used by an

attacker as “zombie” platforms to attack a common target, while not a professional

attack, illustrate this concept.

Finally, the professional is willing to invest a significant amount of time in both

the development of the artifice as well as its use – possibly waiting years before reaping

the benefits of the act of subversion. This final characteristic demonstrates another facet

of the professional attack. The subverter (who plants the artifice) may be – in fact,

usually will be - a different individual than the attacker. In this scenario an attacker may

have paid someone else to perform the subversion and will at some point in the future,

activate the artifice and attack the system. The artifice may be designed in a general

enough way that an arbitrary attack is possible.

An important note is that skill level is an independent consideration. The

professional does not necessarily possess more skill than the amateur attacker. As will be

shown by the example in this paper, the technical skill level required to plant an artifice

may be comparable to anyone with a basic ability to understand and write code.

E. CONTRAST WITH OTHER ATTACK METHODS
Meyers (1980) classifies attacks into three categories: Inadvertent Disclosure,

Penetration, and Subversion. This taxonomy is presented with the assumption that the

goal of each attack is bypassing system controls for the purpose of unauthorized

disclosure of information. Distinctions are made between them based on the skill level of

the attacker and the level of control he has on the system under attack. Inadvertent

disclosures predominantly result from accidentally occurring states in the system or

simply when a human error allows unauthorized entities the ability to observe

information in an unintended way. Penetration is a more deliberate attempt to exploit a

flaw that already exists in the system to bypass security controls. The penetrator must be

content with working under the constraints imposed upon him by a system over which he

has no control. He will exploit bugs or other types of flaws to bypass or disable security

mechanisms on the system. In contrast, the subverter is skilled and knowledgeable and

has sufficient access to the system at one or more points in its life cycle to exert influence

on its design, implementation, distribution, installation, and/or production in a way that

 6

can be later used to bypass the protection mechanisms. He will not rely on the presence

of an accidental bug in the system (which may be corrected at any time), but will favor

instead a carefully hidden mechanism that he can be relatively sure will persist through

new product versions and upgrades.

The distinction between the so-called Trojan Horse and an artifice as used in

system subversion is important to understand. The Trojan Horse is a piece of software

that provides two distinct functions. One is observable and is a function that entices an

individual to use the software. The other function is hidden and carries out the malicious

intentions of its designer. Implicit in this description is that the Trojan Horse requires

actions (but not the active cooperation) of a legitimate user on the system. It will

therefore be constrained by the level of access that this user has on the system. With this

technique, system security mechanisms are still in place and functioning properly – the

attacker’s code is executed with a surrogate’s permissions. If the surrogate has a

restricted domain of control, the Trojan Horse software will be limited in its utility to the

attacker. Subversion on the other hand, does not require action by a legitimate user. It

simply bypasses any security mechanisms that the subverter chooses to bypass.

Additionally, an artifice will typically include the capability to be remotely

activated and deactivated. The normal state for the artifice is deactivated. In this way,

the artifice is less likely to be observed by the users and operators of the system. The

mechanism that activates the artifice waits for some unique trigger to exist in the system.

Examples are a particular stack state, an unlikely sequence of system calls or signals, or

codes hidden in unused portions of data structures passed into the kernel via system calls.

The possibilities are endless. This trigger can be thought of as a key that can be made

arbitrarily long from a cryptographic standpoint. Other examples from Grant and Richie

(1983) include triggers such as geographic position or keywords observed in messages

processed by communication systems. As a result, no amount of security test and

evaluation (ST&E) can confirm the presence or absence of the artifice. This will be

explored later in Chapter VI. “Limiting the Risk of Subversion in Information Systems.”

Brinkley and Schell (1994) classify misuse techniques similarly into human error,

user abuse of authority, direct probing, probing with malicious software, direct

 7

penetration, and subversion of security mechanism. In this taxonomy, subversion stands

apart as well for the same reasons described above.

F. WHY DECISION MAKERS SHOULD SERIOUSLY CONSIDER THE
THREAT OF SUBVERSION
That subversion is a threat is even truer today than it was in the past. The sheer

size and complexity of today’s systems alone make the insertion and hiding of an artifice

much easier than it was at the time of Meyers’ thesis. Additionally, design and

development efforts are more divided among many individuals or departments which

makes it possible to divide the artifice into separate modules further obscuring its true

nature.

As the market for information technology gradually shifted from the government

and military to the private sector, the government’s ability to keep pace with industry

diminished. For the government to continue developing systems in-house would hinder

its ability to do business with private industry. As a result, the government shifted to the

use of commercial products and in so doing resigned itself to accepting whatever

direction products were taken by the larger market forces. It is now clearly evident that

security was unimportant to the broader market and therefore had little impact on an IT

company’s bottom line. As competition among vendors increased, the pressure to release

products by deadlines intensified. As a result, a subverter may stand a better chance of

getting his artifice through quality control (if it is noticeable at all) in the rush to get the

product to market. This is the environment in which the products we rely upon for our

information technology needs are developed.

One does not need to look far to find reports of security critical bugs and system

intrusions that could just as easily been the result of subversion as error. Recent press

reports illustrate the opportunity and motive to conduct a subversive attack in the

Microsoft Windows operating system. As this is a major vendor with a tremendous

market share, any such subversive attack would have far reaching impact. During the

month of October 2000, an individual gained access to systems at Microsoft and had

access to the source code for a future release of the Windows operating system and

 8

Office Suite2. The company of course dismissed the possibility that the code was

tampered with, but it would be impossible to provide any real level of assurance that this

is true. In January 2001, Verisign Corporation (http://www.verisign.com) erroneously

issued Microsoft certificates to individuals who falsely claimed to be Microsoft

employees3. As a result, these individuals had the opportunity to publish code that would

appear to be certified by Microsoft Corporation. Hence, many users (even

administrators) might associate a false level of trust with malicious software (operating

system upgrades, etc.) written by these individuals. On Dec 17, 2001, shortly after the

United States’ war on terrorism began, Newsbytes reported4 on claims by a captured

member of the Al Qaeda regime in Afghanistan that members of a terrorist organization

had infiltrated the Microsoft Corporation as programmers for the expressed purpose of

subverting the Windows XP operating system. While there was a lack of corroborating

reports, this indicates that subversion is considered as a valid attack technique.

Taken together, these cases demonstrate that both opportunity and motive exist

for carrying out a subversive attack. By the example presented later in this paper, one

may conclude that the means to mount such an attack would not be hard to attain.

Therefore, in order to fulfill the responsibility to protect information systems, decision

makers should be aware of this threat and consider its significance in all deployments of

information technology. Certainly, decision makers could be considered negligent if

subversion is ignored in a wide range of military systems or in the systems upon which

the critical infrastructure of the United States Depends.

G. OUTLINE

The remainder of this paper is organized as follows. Chapter II. “High Level

Discussion of the Network File Server (NFS) Experiment” describes the experiment from

a high level, covering the goals and objectives and how these affected the design of the

artifice.

2 See http://money.cnn.com/2000/10/27/technology/microsoft/
3 See http://www.verisign.com/developer/notice/authenticode/
4 See http://www.newsbytes.com/news/01/173039.html

 9

Chapter III. “High Level Discussion of SSL Subversion” describes an attack,

which was not implemented in this project, by which an attacker can observe the SSL

encrypted network communications between two systems with little to no risk of being

discovered. It is shown that no amount of assurance on the server side alone can prevent

such an occurrence if the client is subverted.

Chapter IV. “Detailed Description of the NFS Example” describes the

implementation of the NFS experiment in detail.

Chapter V. “Evaluating System Security in the Face of Artifices” debunks the

prospect of discovering the presence of artifices or proving their absence in a system after

it has been developed either through code inspection or by security test and evaluation.

Chapter VI. “Limiting the Risk of Subversion in Information Systems” presents

the only known solution for eliminating the threat of subversion.

Chapter VII. “Conclusions and Future Work” ties all of these points together and

proposes future direction to address the threat of subversion.

 10

II. HIGH LEVEL DISCUSSION OF THE NETWORK FILE
SERVER (NFS) EXPERIMENT

A. HIGH LEVEL CONSIDERATIONS

1. General

The primary purpose of this thesis is to highlight the risk of the threat posed to an

information system by a professional attacker mounting a subversion attack. A

demonstration of a working example was decided to be the best option for making this

point. To achieve maximum impact, not only did an artifice need to be constructed, but a

full demonstration of an attack had to be developed as well. As a result, the experiment

diverges from a true reflection of the professional attack in several respects. First, there

were significant restrictions on the time available to construct the artifice. This would

rarely be the case in a well crafted artifice such as might be constructed by a professional

attacker (e.g. a nation-state, organized crime group, or company engaged in corporate

espionage). Second, the author was free to openly plant the artifice and did not need to

be concerned that his actions might be discovered. Obfuscation of the artifice was not

given serious attention. In a professional attack, obfuscation would be of the utmost

importance and would add to the time required. Finally, there was essentially no long-

term motivation in the development of this attack. The professional would be motivated

by the prospect of a very significant payoff potentially far in the future while the author

was motivated by a short-term payoff goal. In spite of these constraints, this experiment

demonstrates the inability of contemporary approaches (such as application level

security, encryption, security test and evaluation (ST&E), and perimeter defenses) to

provide for security against subversion.

2. Selecting the Method of Subversion and the Target System
Subversion may occur at any point in the lifecycle of a system (Meyers, 1980).

However, since access to the lifecycle of a major operating system is quite limited for a

student, the installation and maintenance phases present greater opportunity for insertion

of an artifice. Also, in the case of open source systems, a distribution phase attack could

be mounted. Several Linux vendors offer no-cost versions of their operating system for

download from their websites. MD5 hashes of the CDROM images are posted to provide

 11

customers with the ability to check the integrity of the downloaded images. Often, third

parties provide mirror sites to reduce the load on a single server, which opens the

possibility for a malicious mirror site offering subverted versions of the software.

For the reasons stated above, the Linux operating system was chosen as the

platform on which to build the demonstration. The availability of source code and the

abundance of documentation make the Linux kernel fit well into the constraints of the

experiment.

Choosing an open source operating system for this experiment runs the risk that

some readers will be lead to believe that closed source products are immune to the attack

as demonstrated. While it is arguably more difficult, the task is not particularly daunting

for the professional attacker described above. As this example is carried out late in the

lifecycle of the product, there would be significantly more work involved in subverting a

closed source product. Planting an artifice during the distribution or installation phase

would involve reverse engineering the application and creating a binary patch to insert

the artifice at the appropriate location in the product binaries. However, during the

earlier phases of the lifecycle, the level of difficulty from a programming standpoint is

the same for both closed and open source products. Then there is the question of access.

Here again, the professional is one who will either have the access or have the resources

to obtain it regardless of the open or proprietary nature of the system.

3. Selecting a Suitable Attack Demonstration
In order to achieve the desired impact, an attack had to be selected such that its

significance was readily apparent to the average observer. Moreover, the activation

mechanism needed to be commonly available and understood. To this end, the author

chose a Network File Server (NFS) as the application on which to demonstrate the attack.

The file server is general enough and common enough that the typical user of information

technology will immediately understand its function as well as the notion that one user’s

data should be protected in some way from access by other users who lack permission to

do so. A demonstration in which an attacker is able to obtain access to information

which he should not have should be comprehendible to readers with diverse levels of

technical sophistication.

 12

Likewise, the activation must be fairly straightforward. After investigating

several options, the author settled on using the network interface for activation. Again,

network communications are easily explainable to most audiences. They are also

ubiquitous enough that the activation interface will likely be available on any target

system as well. The Internet is one of the most widely used technologies available today.

For an overview of the aspects of Internet networking that apply to the following

discussion, see the APPENDIX.

The specific form of activation in this experiment involves sending a malformed

packet, which contains some additional information to the target. The target’s

networking implementation (having been subverted) will drop the malformed packed as it

normally would, but in addition would recognize the packet as being a trigger to activate

the artifice that will then grant the attacker access. Hence, the artifice on any system

connected to a network can be activated remotely from any other system connected on

the same network (e.g. the Internet, Wide Area Network or Local Area Network).

Additionally, the artifice can be activated locally by sending the activation packed to the

host’s loopback address (an address that loops back to the sender of the packet).

For the reader who does not have the opportunity to observe a demonstration of

the NFS example, the attack (shown in Figure 1.) proceeds as follows. A client is shown

to have the file system of a remote network file server mounted locally. The

demonstrator shows how he is denied permission to access a certain portion of the file

system. An activation packet is sent to the subverted server. Then the demonstrator

shows how he subsequently has access to read, write, and modify file objects on the

server. Finally, a packet is sent to deactivate the artifice and the normal functioning of

the system is confirmed by showing a denied attempt to access another user’s file or

directory on the server.

 13

Figure 1. The NFS Attack Scenario

 14

Attacker
UID=5Q1

Attacker requests access to
directory for which ÜD 501
lacks pernissions

Server responds with
"Permission denied*

Attacker sends activation IP
packet with UID=501 encoded
in the packet

-s-

Attacker requests access to
directory for which UD lacks
permissions

Server responds granthg attacker full access since
permission checks are now disabled for UID=501.
System functions normally for al other users

*

Attacker now has total access
to file system on NFS Server

Attacker sends deactivation IP
packet. Server returns to normal
operation for all users

B. ARTIFICE DESIGN AND INTEGRATION INTO THE OPERATING
SYSTEM
The purpose of the artifice used in this example is to provide a means to bypass

file permission checks for a specified user at will and then to re-enable the normal system

operation. The Linux kernel uses a virtual file system that abstracts all of the various

types of files systems and devices into a logical, consistent interface.

The example presented here shows how a few lines of code can result in a

significant vulnerability. It exhibits all of the characteristics of subversion except that no

real attempt has been made to hide or obfuscate the artifice. First, the artifice is small. In

all, eleven statements in the C programming language are needed for this example. This

small size in relation to the millions of lines of code in the Linux Kernel makes it highly

unlikely that any but those involved in the development of the kernel would notice. The

artifice itself is composed of two parts located in two unrelated areas of the kernel.

A second characteristic is that it can be activated and deactivated. As a result, the

functionality exists only when the attacker wills it. This will further complicate any

attempt to discover the existence of the artifice. Unlike some Trojan Horse attacks, there

will be no suspicious processes running on the system. Even when activated, the

functionality is embedded in the kernel and not in a user-space process so its

observability is limited. Under these conditions, no amount of testing is likely to show

the presence or absence of a well-hidden artifice.

Finally, it does not depend on the activities of any user on the system. The

attacker can activate and deactivate the artifice at will as long as the system will process

IP packets. He is therefore not subject to any permission constraints of a particular user

on the system. Moreover, the fact that all users and administrators of the system may be

trusted (for example in an environment where all users are cleared to the same level and

the system is operated in system-high mode), has no effect on the attacker’s ability to

exploit the system. Administrators make the system vulnerable simply by connecting it

to a network.5

5 A closed system can be vulnerable as well by using triggers based on other conditions in the system

such as geographic position, system load, etc. For examples, see Grant and Riche (1983).

 15

1. Artifice Function
The artifice in this example subverts the Linux file system permission checks.

When in the activated state, the artifice grants the attacker access to any file on the

system by causing the file permission check in the kernel to be bypassed. This behavior

is limited to a specific user ID that the attacker specifies at activation time. The system

functions normally for all other users. In fact, the attacker can even use a userID that is

unused (i.e. one for which no account exists) on the target system. Activation and

deactivation is accomplished by sending a single User Datagram Packet (UDP) to the

target system. The portion of the kernel that receives network communications has also

been subverted to recognize a packet that has a distinguishing characteristic (a trigger

known only to those involved in the subversion and the attack) that activates and

deactivates the artifice in the file system. The trigger can be made to be arbitrarily

unique to avoid not only accidental activation and deactivation, but also make it difficult

to guess the activation code (this will be discussed in greater detail later).

The operation of the file permission check mechanism in the subverted system is

shown in Figure 2. The comparisons that are made in the decision branches reference a

global variable in the kernel. Since the variable is global, any portion of the kernel can

have access to this value. Global variables are used quite often in the Linux kernel.

 16

Permission Check requested on a

file system object

Is Artifice
Activated?

Proceed with normal
permission test

Proceed with normal
permission test

Does current
UID match

desired IUD?

No

No

Yes

Yes

Access Permission Granted

Yes

Figure 2. File Permission Checks in a Subverted System

The artifices’ global variables are set and cleared in the activation and

deactivation mechanism. This occurs in the portion of the kernel that implement the

network protocol stack. In the Transmission Control Protocol/Internet Protocol (TCP/IP),

headers contain checksum values to ensure integrity of the received data. The example

uses a User Datagram Packet (UDP) to activate and deactivate the artifice. In the UDP

handling code of the kernel, every UDP packet is tested for an invalid checksum. If one

is detected, control passes to a portion of the kernel that logs an error and drops the

packet (removes it from the list of packets in the queue). In the subverted kernel, the

checksum error code looks for some predefined unique values. If this condition is met, it

sets the artifice state to “On” and the user who is to receive privilege to the value in the

source port field of the UDP packet. This control flow is shown graphically in Figure 3.

 17

UDP packet with bad checksum

is received causing control to
pass to csum_error handler

Does checksum
value match

trigger value?

Proceed with log and
drop packet process

No

Yes

Set artifice state to “On”. Read
UDP source port field from

packet and store this in global
variable representing the user to

have privileged access.

Figure 3. Artifice Activation

Deactivation occurs the same way except that the global variables are set so that

the artifice is deactivated and the system returns to its original operation.

C. THE SUBVERTED SYSTEM IN OPERATION
A system subverted in this way is vulnerable simply by connecting it to a network

that can be reached by the attacker. In fact, the only action required on the part of an

administrator of the NFS system is to connect it. Furthermore, the only action he can

take to deny access to the attacker is to disconnect it (making it useless as an NFS server).

While it is true that there are additional measures that can be taken to enhance the

security of NFS over the configuration used here, they are largely ineffective, as the

subverter would simply bypass these security controls as well. For example, NFS servers

register clients that are permitted to use them. If the attacker works from one of these

machines, the attack is trivial. If the attacker does not have access to one of these

 18

machines, he merely needs to be in a position to observe traffic on the network and spoof

his identity as that of a legitimate NFS client.

D. CHAPTER SUMMARY
We have described an example of subversion, which is simple but effective for

illustrating the risk of subversion. While it is possible to secure an NFS server in ways

that will render this artifice ineffective, to dwell on such details would distract from the

point. The main point here is that any protection mechanism can be rendered ineffective

by modifying it so that the protection mechanism is bypassed. With the risk that the

artifice can be planted in the kernel, no application layer security solution can be counted

on to provide the protection for which it is designed.

 19

THIS PAGE INTENTIONALLY LEFT BLANK

 20

III. HIGH LEVEL DISCUSSION OF SSL SUBVERSION

As a second example, a high level discussion is presented here of a subverted

Secure Sockets Layer (SSL). SSL is commonly used to provide secure communications

between web servers and web clients (browsers) so that internet banking transactions and

credit card purchases for web commerce applications are protected from unauthorized

observation or modification. The client and server negotiate session keys that are used to

encrypt traffic between them using some symmetric encryption algorithm. Linux systems

commonly use OpenSSL (http://www.openssl.org) to implement SSL. The Apache Web

Server6 (http://www.apache.org) has a mod_ssl package available that acts as an interface

between the web server and OpenSSL. Therefore the Apache web server relies on

OpenSSL to perform the encryption and decryption of the web traffic.

A. OVERVIEW OF A POSSIBLE SSL SUBVERSION
SSL works in the following manner. The client and server use symmetric session

keys to encrypt and decrypt traffic sent between them. The session keys are generated by

the sender and then encrypted with either a secret shared by both systems or by using

some public/private key asymmetric encryption. When the encrypted session key is

received, it is decrypted by the receiving system and then used to decrypt the data

received from the sender. There are a number of options available to the attacker for

subverting this mechanism. The most obvious is to simply duplicate all communications

in an unencrypted form and send them to a system of the attacker’s choosing. This

option might cause far too much observable system activity to be considered viable by

the professional attacker. Another option could be to weaken the key generation

mechanism by limiting the amount of entropy used to generate random numbers. The

attacker could then capture the network transmissions and the task of “breaking the code”

would be sufficiently constrained so as to make it computationally practical.

A much better option than either of these two would be to simply have one of the

systems participating in the communication send the session keys out in an unencrypted

form. The attacker could then position himself between the two systems, gather the

6 According to the Netcraft Survey (http://www.netcraft.com/survey), over 65% of the active web
servers in February 2002 were running the Apache web server.

 21

http://www.netcraft.com/survey

encrypted traffic and at the same time, watch for the session keys. Having both, he could

then decrypt and read the data. Due to the fact that the session keys are unknown on

either system outside of the SSL implementation, plus the fact that they are a ‘random’

sequence of bits, it is unlikely that any observation of them would lead to the conclusion

that they are keys that have recently been used to encrypt SSL traffic. As an added

precaution however, the session keys could be transmitted in a way that draws little

attention to the fact that they are being sent as described below.

Web communications use Transmission Control Protocol (TCP), which has

provisions to guarantee the connection’s integrity. One of the ways it does this is by

providing sequence numbers in each packet. The sequence numbers give the receiver the

ability to ensure that it received all of the packets (by checking for a missing number in

the sequence) as well as to put the packets back together in the correct order. In much

the same way that the trigger is set in the NFS example, the session keys could be

embedded in a packet that has an invalid checksum. The receiver would therefore ignore

and drop the packet. Since the checksum is bad, the receiver would normally request that

the sender retransmit it. However, the artifice would simply cause the packet to be

dropped silently in this case. The logging of the bad packet could be bypassed as well.

To the attacker eavesdropping on the communication, these packets would be tested for a

characteristic chosen by the attacker to indicate the presence of the session key. In order

to know which data packets are associated with which key, the artifice could reuse one of

the legitimate TCP sequence numbers that was used to transmit the SSL encrypted data.

This approach has some distinct advantages. First, the attacker can be totally

passive and maintain anonymity. No packet needs to be sent to him directly by either

system. Another advantage is that a subverted system on either end would provide all

required information for decrypting the traffic. This is significant in that it invalidates

any assumption that using high assurance systems or additional security products at the

server end only will protect the data stored at the server. Since both ends must use the

same session keys, any client that is permitted to access the server can potentially

undermine the security in place on the server end.

 22

For instance, one might provide additional protection of the server’s private keys

by storing them on a smart card. With this design, the session keys are decrypted on the

smart card, which adds some level of protection over decrypting the keys on the host

operating system since the private key is not exposed. However, the computationally

intensive decryption of the traffic is most often performed off of the card due to smart

card processor and I/O limitations. As a result, the session key (once decrypted on the

smart card) will be sent to the host (i.e. server) system’s SSL implementation that will

then use it to decrypt the traffic. If the server’s SSL implementation has been subverted

to send the session key to the attacker, the presence of the smart card is irrelevant to the

level of confidentiality realized. Additionally, since the same session key is used on both

the server and client sides, the security is only as strong as the weaker of the two sides.

The client may just as effectively transmit the keys as the server.7

B. CHAPTER SUMMARY
We have provided an additional high-level discussion of a potential subversion of

SSL, which is relied upon for protecting confidential communications on the internet. In

this example, subversion of either the web server or the web client can result in a

compromise of this communication. As proposed here, placing the artifice in the SSL

implementation will affect not only web traffic, but also any application that relies on

SSL. We have also presented a case against investing significant amounts of resources in

placing strong security measures at the server side only. Before making such an

investment, the prospect of subversion and its potential consequences should be

thoroughly considered.

7 This is not to imply that every component in the network must be high assurance. Architectures such

as those presented in Weissman (1992) and Fellows, et. al. (1987) provide sufficient security at both the
client and the server without requiring the client to give up “typical commercial functionality.”

 23

THIS PAGE INTENTIONALLY LEFT BLANK

 24

IV. DETAILED DESCRIPTION OF THE NFS EXAMPLE

The details of the example are presented here for those who are interested. The

discussion begins with a description of the normal functioning of file permission checks.

It must be remembered however, that the details of what happens in these tests were

rendered totally irrelevant in the experiment. None of these details matter since the

artifice simply bypasses the permission checks.

A. LINUX IMPLEMENTATION OVERVIEW
Linux implements a Virtual File System (VFS), which is a software layer in the

kernel that abstracts the system calls for various types of file systems into a single

common interface. The VFS provides access to disk-based filesystems (Unix, ext2, MS-

DOS, VFAT, etc) and special filesystems (/proc and /dev). In addition, VFS sits

above the implementations for several network files systems such as the Network File

Server (NFS), Coda, SMB (Microsoft’s Windows and IBM’s OS/2 LAN Manager), and

Novell’s NetWare Core Protocol (NCP). A diagram of this relationship is shown below

in Figure 4.

Virtual File
System

… MS-DOS NTFS /dev NFS

File System Calls

Figure 4. The Linux Virtual File System

File object access permissions in Linux are implemented using the standard Unix

file permission bits for read, write, and execute as granted to owner, group and others.

All requests for access to a file flow through the function permission() located in the

kernel source file fs/namei.c. The file’s inode structure is first checked for a

 25

pointer to a file system-specific permission() function. If there is none,

permission() calls the vfs_permission() function. Permission bits are

checked against the user specified in the current process’ task_struct (defined in

include/linux/sched.h) which is stored in the process descriptor in the kernel-

space stack as shown in Figure 5. below. The file system user ID (fsuid) is used by

this function in the tests for permissions. Having a separate file system userID (fsuid)

enables the kernel to handle requests from a process that is acting on behalf of another

process without modifying the normal uid or effective user ID (euid) which may be

root or 0. The permission() function returns a zero if the permission test succeeds

and the –EACCESS constant if it fails.

STACK

PROCESS
DESCRIPTOR

0x015fbfff

0x015fb000

0x015fa878

0x015fa3cb

0x015fa000
current.

esp

Figure 5. The Process Kernel Stack (From Bovet & Cesati, 2001)

1. Artifice Implementation

The VFS system is an attractive location for the artifice since it can affect

numerous file systems types. Simply returning a zero from the permission()

function will result in approval of the requested access. This alone, however, is far too

general, as all users on the system will be granted access to any file. To avoid such

obvious behavior, a mechanism must be built through which a particular user can be

specified leaving all other users on the system subject to the normal permission checking.

This functionality is implemented in the activation mechanism. Any activation

mechanism should be flexible enough to be used in a variety of situations and ubiquitous

 26

enough that the attacker can be relatively sure it will be available on his target. In

meeting these design objectives, the networking protocol is a suitable location for the

activation portion of the artifice.

The portion of the artifice that grants access is located in the fs/namei.c

source file of the Linux 2.4.3 kernel. Two global variables, activated and userid,

are used to store the state of the artifice (deactivated=0, activated=1) and the uid for

which to grant access respectively. Immediately upon entering the permission()

function, a test is conducted by an ‘if’ statement that evaluates (1) whether or not the

artifice has been activated and (2) whether the process’ fsuid is equal to the global

userid variable. If so, the permission check returns success (access granted) regardless

of the file permissions on the requested file. Otherwise, the permission tests proceeds as

normal.

The activation and deactivation artifice is planted in the Linux 2.4.3 kernel source

file net/ipv4/udp.c. Any error detected in the checksum of a UPD header will

result in execution branching to code that logs the event and silently discards the packet.

The artifice is planted in the portion of code that provides this function. The artifice is

embodied in two ‘if’ statements. The first statement activates the artifice. It first

checks to see that (1) the artifice has not already been activated and (2) whether or not the

bad checksum matches the activation codes of decimal 213 or 2113 (chosen arbitrarily).

If so, it activates the artifice by setting the global variable activated to 1 and the

userid variable to the user ID that has been specified in the UDP source port.

As designed in this example, activation proceeds in the following manner: a UDP

packet is constructed with the following characteristics:

 27

Field Value

Checksum Invalid and equal to one of two
predefined values (213 or 2113)

Source Port The userID corresponding to the
uid for which the attacker wishes
to grant access.

Destination port Irrelevant

Table 1. Activation Packet Characteristics

Two predefined values (decimal 213 and 2113) for the checksum are used in the

event that our ‘secret’ checksum (the activation code) turns out to be valid for the packet

we construct. In the normal kernel, a packet with a bad checksum would simply be

discarded. Since UDP is a stateless protocol, the packet will just be forgotten. Since

userIDs are commonly small numbers (most Linux implementations begin UIDs for

normal users close to 500), these packets will appear to have originated from a privileged

(<1024) port on the host and will more likely be permitted through a firewall than those

with higher port numbers. TCP could be used as well but would require a slightly more

complex implementation. Once a UDP packet with these characteristics has been

received, the artifice will be in the activated state.

Deactivation proceeds in a similar fashion. A packet with the following

characteristics is sent to the target host:

Field Value

Checksum Invalid and equal to one of two
predefined values (312 or 3112)

Source Port Equal to the current value stored in
the userid variable

Destination port Irrelevant

Table 2. Deactivation Packet Characteristics

When a packet with these characteristics is processed, the artifice will set the

activated variable to zero which deactivates the artifice.

There are a few things worth pointing out about this artifice. First, it gives the

subverter even more power with respect to the file system than the root user has. Even

 28

files for which the root user does not have current access8 will be available to the

attacker. Second, not only can this attack can be mounted remotely via any network path

available, but it can also be launched locally by sending the activation and deactivation

packets to the localhost (127.0.0.1) address.

2. The Network File Server as a Target
The Network File Server (NFS) allows a remote file system to be mounted locally

and appear as though it were located on a local disk drive. NFS runs on top of the RPC

protocol and uses AUTH_SYS as its default security mechanism. AUTH_SYS is a weak

security protocol but is common in NFS implementations. In this protocol, the standard

set of user credentials (the UID and associated Group ID’s) are used for determining

access. Every NFS request will contain these credentials. When a request comes into the

server, the NFS Daemon maps the uid of the requestor into the fsuid of the NFS

daemon process. After some initial checks, the request will be passed through the VFS

and into the permission() function. As specified earlier, the access request will be

evaluated based on the fsuid.

B. CHAPTER SUMMARY
We have provided the details of the NFS subversion example. While the

implementation is small (about 11 C language statements), the fact that it is in the source

code listing makes it vulnerable to detection. Again, obfuscation was not one of the goals

of this project. Given more time, the artifice could be hidden much better. The critical

observation is that the technical skills required to subvert a system are relatively

commonplace.

8 Of course the root user could simply give himself access to the file using the UNIX chmod

command.

 29

THIS PAGE INTENTIONALLY LEFT BLANK

 30

V. EVALUATING SYSTEM SECURITY IN THE FACE OF
ARTIFICES

As stated earlier, no real attempt was made to hide the artifice in the Network File

Server example. In contrast, the professional attacker will most definitely spend

significant effort on this aspect of the attack. This section will begin with a discussion of

the various techniques that might be employed to hide an artifice followed by a

discussion of the ways in which an artifice might be detected. Apart from catching the

subverter in the act of subversion, discovering the presence of a particular artifice can be

made extremely difficult.

A. TECHNIQUES FOR FINDING AN ARTIFICE
The manner in which one may find an artifice depends upon the way in which it

was hidden and the point in the product lifecycle when the subversion occurred.

1. Design and Implementation Phase Subversion
Meyers (1980) describes several examples of artifices that could be implemented

in a system’s design phase. Design phase subversion has the least chance of being

“patched” away. Of course the artifice will be visible at some level in the design

documentation but there is ample opportunity for a subverter to propose to a design team

a seemingly sound alternative that offers subtle vulnerabilities. One subtle example can

be found in asymmetric encryption protocols which is discussed below as an analogy.

Jim Alves-Foss (1998) presented a very interesting example in the context of

public-key based authentication protocols. In this attack, an otherwise secure protocol is

subverted in an indirect way by the existence of another independent protocol (possibly

devised by an attacker) that is permitted to use the same key pair as the original protocol.

By interleaving messages between the two protocols, the attacker can masquerade as a

legitimate user to other entities. He demonstrated how a Needham Schroeder Public Key

Protocol (which had been hardened against a previously known attack) could be spoofed

if it used the same keys that are used in another protocol designed for a different purpose.

Hence a subverter developing an application that uses public key certificates could devise

his own protocol (possibly secure enough for the new application) that provides the

 31

necessary pieces to masquerade as other entities in previously established protocols and

applications.

What makes this example of subversion interesting is its circuitous nature. The

target of the attack is not the authentication protocol but the public key infrastructure.

The authentication protocol is not altered in any way by the subverter. To accomplish his

goal, the subverter merely needs to influence policy so that his new application and

protocol is permitted to use the same keys as the existing ones.

Such subtle interactions often occur accidentally and are discovered later with

widespread use. However, as stated earlier, the well-designed artifice will have some

form of unique trigger mechanism to hide its presence in normal operation modes. In this

way accidental discovery from general use is nearly impossible.

The artifice in the NFS example could potentially be inserted during the

implementation phase of the system lifecycle. In this mode of operation, the subverter

will attempt to insert the artifice during the implementation or coding of the system. He

can accomplish this either by infiltrating the development team as an agent or by

exploiting weaknesses at the development facility (either in its physical security or in its

configuration management system).

In a given system, the subverter often has a vast number of options for hiding an

artifice. The use of low level languages such as assembly (common in the Linux kernel

to enhance speed) can be used to code the artifice in a way that make understanding its

nature difficult. For example, in the Linux operating system, every process acts on behalf

of a user (possibly the system) who is identified by a userID stored in the process

descriptor that the kernel maintains for each process. When a process requests access to a

file, the kernel checks the userID of the requestor by inspecting this data structure. Since

this data structure is used frequently and for many purposes, it must be fast. Linux

achieves speed in functions like this by using low-level assembly language to program

them. To keep the difficulty of writing the code at a minimum, a macro called current

has been implemented that will return the starting address of the process descriptor

belonging to the current process. Individual members of the process descriptor (e.g.

fsuid) are referenced relative to this base address. Prior to compilation, every instance

 32

of current in the source code will be replaced with the assembly language statements.

So, one way to hide a portion of the NFS artifice, would be to replace the macro

current with a modified version of the assembly code that would return the address of

the fsuid data member rather that the beginning of the data structure. It therefore

would be less likely to be associated with the original macro’s function.

Any artifice placed in the system’s source code is visible in the source listing. A

developer with understanding of the system of sufficient breadth and depth might

discover the artifice through inspection. This depends on how well the subverter has

hidden it. The subverter might also remove the artifice from the source listing after it has

been compiled. Another technique was presented in Ken Thompson’s 1984 Turing

Award acceptance speech (Thompson, 1984). In this speech, he described a subverted

compiler that would recognize when it was compiling the UNIX source code and insert a

trap door. In this way, the trap door could not be discovered from inspection of the

source code. This speech sent shock waves through the audience at the time, but this

technique was described more than a decade earlier in Karger and Schell (1974).

2. Distribution, Maintenance, and Support
With these attacks, the subverter can choose to affect all delivered systems or

focus the artifice with respect to a particular target. In these attacks, the system has been

through testing for quality assurance and a binary has been produced that is ready to ship

to customers. The subverter gains access at some point in the distribution system. He

then modifies the system by applying a patch to the binaries or by replacing the binaries

entirely.

Similar methods are used in maintenance and support phases. Most vendors have

patches and updates available for download via the Internet. Others ship them through

the mail or send them with maintenance personnel. This artifice is perhaps the easiest to

find if a known good copy of the system can be obtained for a byte-by-byte comparison.

The difficult task is establishing that you have a good copy. Some measure of assurance

is provided by digitally signing the binaries. The vendor runs a cryptographic one-way

hash function over the binaries and then signs it using a private key. To confirm that the

software has not been modified, the customer uses the vendor’s public key to verify the

 33

signature. In some cases, a GNU Privacy Guard (GPG) key may be posted on the

website with the software. GPG is an open source equivalent to Pretty Good Privacy

(PGP). The trust model of these schemes is such that each user determines whom to trust

individually as contrasted with the model used in the commercial Public Key

Infrastructure (PKI) and Department of Defense models in which a trusted root authority

(e.g. the DoD, Verisign, etc.) binds identities to public keys and signs a certificate that

provides this binding. Providing the public keys through the same distribution channel as

the software leaves customers with little reason to trust that the software, public keys, and

hash values have not all been modified. The PKI trust model has been compromised in

the past as well as described in the Verisign certificates case in Section I.F. “Why

Decision Makers Should Seriously Consider the Threat of Subversion.”

B. PROVING THE PRESENCE OR ABSENCE OF AN ARTIFICE
The question to ask given an example of an artifice such as the one presented here

is not “How can this artifice be found” but “How can one be sure that there are no

artifices in the system?” The answer to the first question is of little value. The artifice

presented here can be found since it appears in the source listing and two new global

variables are present in the system. It is also relatively overt in that it operates in a rather

direct manner inside a security critical function. However, without controls as described

in Chapter VI. “Limiting the Risk of Subversion in Information Systems”, gaining the

assurance that a system is free of artifices is an impossible task. Two possible ways of

“finding” an artifice once it has been planted have been suggested. The use of these

techniques to provide protection from a subversion attack are refuted below.

1. Source Code Inspection Will Fail to Reveal an Artifice
Having the system’s source code available will not give an inspector the ability to

ensure that it is free of artifices. As stated earlier, the professional will have hidden the

artifice in a way that makes it exceedingly difficult if not impossible to identify by

inspection of the source code. In fact, it is possible for the subverter to plant an artifice in

a way that it never appears in the source listing of the system, for example by subverting

the compiler used in developing the system, or planting the artifice in the object or binary

code directly.

 34

Even without going to the trouble of subverting the compiler, the subverter can

hide an artifice in a way that it is likely to never be found. Today’s systems are much

larger and more complex than ever before. The more complex a system is, the harder it

is to understand its overall function. The attacker can use this fact to make his artifice

hard to understand. Programmers will often leave code alone if they do not understand

what it does and it is not known to cause any problems in the system.

2. Security Test and Evaluation (ST&E) Will Fail to Reveal an Artifice

Security tests and penetration testing are worthless tools for assuring that a system

is free of artifices. Any artifice that incorporates a well-designed trigger (one which is

unique) will never be found because the testing will occur when the artifice is disabled.

The function of the artifice will never be noticed through this type of testing. Code

testing involves testing for the documented features of the system to make sure they

function properly. It does not consider what other undocumented functions may exist in

the system. To do so by testing would require that all possible input be sent to all

possible interfaces. This exhaustive approach is infeasible if not impossible for most

systems.

An informal argument supporting this assertion can be made by comparing the

task of finding an artifice to finding a software bug in a system. It is an indisputable fact

that certain bugs may appear in software that are particularly difficult to track down.

These bugs may appear and disappear as a result of a rare combination of conditions in

the system. Finding them is exceedingly difficult. Now imagine that a similar function is

built intentionally. The feature manifests itself only when a rare combination of system

conditions exists and furthermore, it can be triggered to occur at the will of the attacker.

If finding the source of such a condition that has manifested itself in a noticeable way is a

hard problem, how much harder would it be to find one that will manifested itself only

when triggered? It would be impossible to devise a procedure to test for clandestine code

that operates this way.

Given a black box (i.e. one for which the internal operations are unknown), it is

impossible to determine whether or not it contains an artifice. As stated in Section A.1.

of this chapter “Design and Implementation Phase Subversion,” the attacker can ensure

that nothing more than a black box exists with respect to the artifice, for example by

 35

removing the artifice from the source listing after compilation or by modifying the

compiler to perpetually insert it. In this way, the source code for the artifice will cease to

exist yet the functionality will remain in the system.

Edsger Dijkstra provided a scenario of testing a 72-bit adder that illustrates the

futility of using testing to determine whether or not an artifice exists in the system. In

this scenario, the tester is given a black box that adds two 72-bit values with carry9. His

task is to determine if the adder performs correctly for any given input. He must be able

to state one of two results: (1) the adder performs correctly for every possible input or (2)

the adder does not perform correctly for every possible input. If the result is (2), the

tester must provide the input conditions (i.e. the two numbers) for which the adder fails.

Obviously, the only way to complete this task under these conditions is to test all possible

inputs and validate the output. The number of inputs that would need to be tested is 272 X

272 or 2144 possibilities. Consider the strength of a 128 bit cryptographic key and the

amount of work required to mount a brute force attack against it. The work involved in

cracking a 128-bit key pales in comparison to the work required to test all inputs to the

adder. Conducting this test is computationally infeasible.

Compare this scenario to the task of determining whether or not an artifice exists

in a system. As stated earlier, the subverter can use an arbitrarily long value as the

activation key. Suppose the tester or certifier knows how to tell if the artifice is active as

well as how to try guesses of the trigger value (i.e. he knows how to send an arbitrary

value into the trigger mechanism). This is essentially the same scenario as Dijkstra’s 72-

bit adder with carry problem. Since the activation key can be made arbitrarily long, it is

computationally infeasible (i.e. impossible) to test whether or not the artifice is present in

the system. Now, suppose the task is to test for the presence of an unknown artifice. In

this case, the tester does not know how to send in a guess at the key. Even if he stumbled

across it and somehow accidentally activates the artifice (though he would likely not

realize he has done so), what would he look for in the system? What does he test for after

he makes an attempt at activation? The problem space is now the product of key space,

9 A binary add with carry results in the following operations: two ‘0’s added results in a ‘0’, a ‘1’ and

a ‘0’ added results in a ‘1’. Two ‘1’s added will result in a ‘0’ with a ‘1’ carried over as input to the add
operation performed on the next higher order bit.

 36

potential activation mechanisms, and artifice function. The added difficulty of this task is

obvious. These testing arguments can be extended to cover so-called “active defenses”

built upon the use of intelligent agents or network monitoring to ensure system self-

protection, or to the use of cryptographic techniques for system protection. Thease are

worthless in the face of subversion.

C. CHAPTER SUMMARY
The obvious conclusion from these examples is that no amount of code review or

ST&E can provide even the most basic level of assurance that a system is free of

artifices. How then can one ever have enough confidence in an information system to use

it for critical applications? This question will be addressed in Chapter VI “Limiting the

Risk of Subversion in Information Systems.”

 37

THIS PAGE INTENTIONALLY LEFT BLANK

 38

VI. LIMITING THE RISK OF SUBVERSION IN INFORMATION
SYSTEMS

It is impossible to protect information in a system that contains an effective

artifice since the mechanisms relied upon to provide protection have been “programmed

to fail” under specific conditions. If it is impossible to prove by inspection or testing that

a system is free of artifices and effectively impossible to find a known artifice after the

system has been built, how can one ever obtain a level of assurance that would protect us

from system subversion? To answer this question, we must return to the conditions that

make it possible for subversion to exist as a threat in the first place. In the end, we

present a viable solution to the subversion threat.

A. ANALYZING THE THREAT MODEL
We have shown that subversion is a real threat due to the existence of means,

motive, and opportunity to conduct subversive attacks in the current environment.

Specifically, we have shown that opportunity and motive to mount such an attack exist

through presentation of real-world events covered in the press. We have demonstrated by

an example of a simple attack that the means to plant an artifice is present in anyone with

a modest understanding of the target system and intermediate programming skills.

So, to counter the threat of subversion, we must eliminate at least one of the three

conditions that make it possible. Obviously, it would be impossible to reduce or

eliminate the subverter’s means to subvert the system. The skills required to carry out

this type of attack are far too common today. Eliminating the motive is likewise a

loosing proposition. To do so, one must either reduce the benefit of mounting the attack

or raise the cost of the attack to the point that it becomes prohibitive. Since subversion

bypasses the security controls of the system, the attacker gains at least as much benefit

from it as do legitimate users. Therefore, reducing the benefit for the attacker would

reduce the benefit to legitimate users in equal measure. Recall that subversion is the

choice of a professional attacker, who was characterized by a willingness to incur

substantial costs in resources and time in the first place. The professional attacker could

easily come in the form of a nation state with virtually unlimited resources. Attempting

 39

to raise the costs would likely have limited effect on the motivation of a professional

attacker.

One might also attempt to reduce motive through deterrence. Laws combined

with a strong law enforcement system discourage bad societal behavior in this way.

However, with system subversion, avoiding detection is the overriding concern of the

attacker and one source of his willingness to incur significant costs. Any hypothetical

law enforcement effort would be mired in its inability to detect the activity. In fact, in

some of the early demonstrations by Air Force tiger teams in the early 1970’s, some

artifices were so undetectable, that the system manufacturer was unable to locate them

even when told of their presence and given details on how they worked (Brinkley and

Schell, 1995). Moreover, the source of the attack is equally liable to come from outside

the jurisdiction of law enforcement as it is to come from within. System subversion is a

type of attack that would be considered by a nation state (or state-sponsored

organization), organized crime group, or large corporation involved in corporate

espionage. Therefore, laws would likely have little to no effect on deterring this threat

due to jurisdictional limitations and difficulties in establishing attribution.

We are left then with the task of reducing or eliminating any opportunity to

subvert the system. At one level, this involves denying the subverter access to the system

at all phases in its lifecycle. Physical security of the development environment,

background checks for employees and protected distribution and upgrade channels

provide some measure of defense at this level. However, these measures alone are not

sufficient to provide assurance that subversion has not occurred in a system. Espionage

cases have shown that we cannot solely rely on background checks and security

clearances. To do so in the context of system subversion would require us to be certain

of the trustworthiness of all of the many individuals involved in the design, development,

maintenance, etc. of a system over the course of its entire lifecycle. Some other control

or controls must be put in place such that it would be impossible for the subverter to

insert an artifice without it being detected.

 40

B. SOFTWARE ENGINEERING, OBEJCT-ORIENTED PROGRAMMING
(OOP), AND DEVELOPMENTAL ASSURANCE APPROACHES
Software engineering has gained significant ground as a discipline since the time

that subversion was first discussed. It attempts to provide a sound methodology for

carefully breaking a system down into highly cohesive modules and reduce the amount of

reckless programming that occurs within software projects. OOP languages have made

this task easier by providing language constructs that enable software reuse as well as

data hiding and encapsulation. However, while these measures admittedly bring

tremendous benefit to system development, they do not guarantee secure systems. Parnas

(1972) provides two modularized designs for the same hypothetical system to

demonstrate good and bad examples of modularization.

Likewise, development assurance approaches such as the System Security

Engineering – Capability and Maturity Model (SSE-CMM http://www.sse-cmm.org)

attempt to address the problem by enhancing the quality of the system that produces the

software. The following quote is extracted from the SSE-CMM Vision statement

(available at http://www.sse-cmm.org/vision.htm)

The SSE-CMM, applied to the entire life cycle of products and systems,
will maximize synergy between life cycle phases, minimize effort within
each phase, eliminate duplication of effort, and result in more secure
solutions, with greater assurance and at much lower cost.

These are certainly desirable qualities for any development effort. However, as in

most of the quality-driven models, the SSE-CMM cannot reliably address the threat of

subversion because the model assumes that all members of the team share the goal of

producing secure software. If a subverter is operating covertly on the development team,

the model breaks down.

C. VERIFIABLE PROTECTION
As stated earlier, we have known for a long time how to build systems in a way

that allows us to convince ourselves that it is free of artifices. The highest assurance

rating (TCSEC A1) is based on criteria that address these issues. However, we must be

careful in the use of the term high assurance as there are many vendors making this claim

of products that simply do not come close to these standards. The line between the

colloquial use of the terms high, medium and low assurance are vague and the terms are

 41

easily tossed about in product sales literature and at demonstration booths for nearly

every product aimed at security. What are required are systems that not only meet sound

security criteria, but that are also built in such a way that we can verify the protection

mechanisms they provide. Accordingly, we shall use the term verifiable protection from

the TCSEC (DoD 5200.28-STD) to describe a system that is resilient to subversion. We

will discuss verifiable protection in detail in the following sections.

Take for example the 72-bit adder with carry example (see Section V.B.2

“Security Test and Evaluation (ST&E) Will Fail to Reveal an Artifice”). Dijkstra used

this example to illustrate the absurdity of building a 72-bit adder with carry as a

monolithic piece of hardware. In practice, designers would build this device by

constructing 72 one-bit adders with carry and then linking them together properly. Then,

testing of the entire system amounts to checking each of the 72 individual components for

proper handling of the four possible inputs and properly passing any overflow condition

to the next higher order component. From this perspective, the system has been reduced

to modules that can be completely tested. As a result, the operation of the device as a

whole has become verifiable and we can claim with high assurance that it will properly

handle every possible input without actually testing every possible input.

The simplicity of this example may leave the reader with doubts that such an

approach can scale to a large information system. A slightly more complex example is

presented in Dijkstra (1968). In the design of the “THE”-Multiprogramming System (a

small operating system), he showed that “…it is possible to design a refined

multiprogramming system in such a way that its logical soundness can be proved a priori

and its implementation can admit exhaustive testing.” The THE system and the 72-bit

adder example are alike in that to test the THE system (or any general purpose computer)

at the system interface with no knowledge of how it was constructed would require

feeding all possible programs into the system. He goes on to state that testing must only

involve what is relevant and what is relevant can be decided only if the internal structure

of the system is known. The fact that the set of relevant test cases was small enough to

be exhaustively tested was a result of the modular nature of the design. In the context of

our problem, recall that one requirement of the Reference Monitor Concept (Section I.C.

“Historical Background”), is that security kernel design must be small enough to be the

 42

subject of analysis and tests to assure that it is correct. The exhaustive testing of the

security kernel should be possible if it is built with a modular architecture.

1. Properties of Verifiable Protection
A system offering verifiable protection will provide a high assurance that its

security properties are correct, complete, and allow nothing beyond their specification.

Additionally, it will have the following properties:

• Designed to have no exploitable security flaws

• Enforce security policies on information flow, thereby bounding
the damage of malicious software (e.g., Trojan Horses).

• Built to be subject to third party inspection and analysis to confirm
the protections are correct, complete and do nothing more than
advertised (i.e., no trap doors).

One of the primary risks that is addressed by verifiable protection is the risk that trap

doors may be present which give an attacker the ability to bypass the system’s normal

security controls. As stated earlier, the entire system cannot be considered verifiable.

The size and complexity of the typical system today prohibit such an undertaking. The

properties of the system that must be verifiable should be limited to the interface at the

Reference Validation Mechanism (RVM) (or the boundary of the security kernel).

There must be a formal model describing these properties, which can be

mathematically proven to be sound and correct. An example of such a model is the Bell-

LaPadula access control policy model (Bell and LaPadula, 1975). With verifiable

protection, all of the operations at the boundary of the RVM must correspond to one or

more rules that represent the security policy. Figure 6. shows the work that must be

performed in building a system that provides verifiable protection. The formal model

describes the security policy. This is mapped to a Formal Top Level Specification

(FTLS) which is mathematically proven to be sound. The mapping continues down to

any engineering specifications and down through the implementation of the hardware and

software through code correspondence. Finally, the executable code (binaries) are shown

to map to the source code by analysis of the tools used to generate them. Once this

correspondence has been shown, the soundness and correctness of the system’s security

controls follows by transitivity.

 43

Formal
Model

Formal Top-Level
Specification

Implementation
(Hardware & Software)

Code
Correspondence

Security
Testing

Formal
Verification

Engineering
Specification

Binaries

Tools

Figure 6. Correspondence of Security Policy to Implementation (After NCSC-TG-010)

A system designed in this way will eliminate any opportunity for the attacker to

plant his artifice as any function that does not relate back to the policy model will be

discovered in the correspondence mapping.

2. Requirements for Verifiable Protection
In order to obtain verifiable protection in a system, it must not only be verifiable,

but it also must be possible to audit the correct functioning of the system after the fact.

The TCSEC (DoD 52100.28-STD) requires the following for a system to be verifiable

and auditable:

In order for a design and development to result in technology that is
“verifiable” … it must include at least:

• An information security policy
• A formal mathematical model of the security policy
• A formal top level specification (FTLS), having a precise syntax

and well defined semantics, that accurately and completely

 44

describes the boundary of the RVM in terms of exceptions, error
messages and effects

• A design that uses a complete, conceptually simple protection
mechanism with precisely defined semantics

• An implementation that makes effective use of abstraction,
layering and information hiding.

For a system’s security to be “auditable”, the development process
provides evidence necessary for an effective after-the-fact security
assessment including at least:

• A formal proof that the FTLS implements the security policy
model. Third parties can repeat such a proof. This is in contrast to
a descriptive top-level specification (DTLS), which would require
third party participation in the design process to conclude the
specification implements the model.

• A mapping of all source code within the Reference Validation
Mechanism (RVM) to the FTLS. It is the design process,
particularly the production of a formal specification and a layered
implementation that incorporates information hiding, that makes
this possible. This provides evidence that the implementation is
free errors, including trap doors.

• A demonstration that the implementation is consistent with the
FTLS

• Functional testing in which the advertised features of a system are
tested for correct operation, and it is confirmed

• An information flow analysis of the FTLS
• Configuration management supporting a reliable rebuilding of the

security mechanisms. This requires configuration management for
hardware, software, firmware, formal specifications and all tools
used to rebuild the system. There must exist a protected master
copy of all material used to generate the RVM.

• Trusted distribution allowing confirmation that a given instance of
the security mechanisms matches an authoritative reference point

D. CHAPTER SUMMARY

We have shown that the only viable way to mitigate or eliminate the risk of

subversion is by removing the opportunity that a would-be subverter might have to plant

an artifice during all phases of the system lifecycle. Through proper physical and other

security controls, unauthorized individuals can be denied this opportunity to some extent.

However, a much more practical and effective approach is verifiable protection. This is

the only way one can be sure that the system correctly and completely implements the

 45

protection mechanisms and does nothing beyond its specification. Furthermore,

verifiable protection provides the ability to audit the system and ensure that a delivered

system has not been altered at some post-production phase of the system lifecycle.

 46

VII. CONCLUSIONS AND FUTURE WORK

We have shown that the risk of subversion is one that must be addressed in order

to have any justification for trust in our information systems. Decision makers

responsible for security of information technology should consider this threat when

deploying systems. We have also shown that the current trends in approaches to

“proving” security are inadequate at best. Penetration tests, add-on third party products,

layered defenses and security patches are largely accepted as a means to providing proper

security – a practice known long ago to be irrational. This results in a situation that may

be even more dangerous than having poor security in the first place, as decision makers

operate under the flawed belief that their system provides adequate security or that any

breach will be discovered through layered defenses.

We have also known for some time how to address the threat of subversion.

Evaluation criteria tried and tested over the past 15 years have been applied to

successfully provide appropriate security from a technological standpoint. That these

approaches have fallen into disfavor was foreshadowed in an early work by Karger and

Schell (1973):

We are confident that from the standpoint of technology there is a good
chance for secure shared systems in the next few years. However, from a
practical standpoint the security problem will remain as long as
manufacturers remain committed to current system architectures, produced
without a firm requirement for security. As long as there is support for ad
hoc fixes and security packages for these inadequate designs, and as long
as the illusory results of penetration teams are accepted as a demonstration
of computer security, proper security will not be a reality.

Much has changed since these early days of computer security. The source of

threats has multiplied significantly with the advent of the Internet. Furthermore, our

“…reliance on … technology is increasing much more quickly than our ability to deal

with the also increasing threats to information security” (Landoll, Schaefer, and

Williams, 1995). We continue to nurture a vast industry that provides security as an

afterthought in the form of add-on applications that offer little or no assurance. We spend

unquantifiable resources reacting to the latest known vulnerability by applying hastily

 47

developed patches, which are tested predominantly by placing them in operation. What

we really need is assurance. Not the assurance one hears about at trade shows or in

product sales literature, but a verifiable level of protection, which offers not only

protection from the amateur, everyday exploit but protection from the professional

attacker as well. As it has been attested throughout this paper, we have known how to

offer this level of protection for more than thirty years. However, these techniques have

seen little application. The few systems that were built were proprietary and lessons

learned during their development and in evaluating them is largely undocumented.

Knowledge of how to build such systems exists for the most part in a select few

individuals who are now scattered among various other pursuits. We must begin to look

at these techniques again now - not only for the undeniable fact that the current security

posture of the United States demands it, but also for the fact that if we do not begin soon,

we may loose much of the costly knowledge we attained in those early years.

Already, there are trends that indicate that this expertise is slipping away from the

United States. Criteria-based security evaluations are now conducted against criteria

specifications written in the language of the Common Criteria for Information Security

Evaluation (CC) (see http://www.commoncriteria.org). Under the current scheme, a

Mutual Recognition Arrangement exists between the United States, Canada, Great

Britain, and other European member nations to recognize evaluations conducted at the

lower assurance levels. This was in part an effort to appease vendors who did not want to

spend resources having their products evaluated multiple times in each nation. However,

inspection of the evaluated products list

(http://www.commoncriteria.org/epl/ProductType/all.html) indicates that the majority of

the evaluations above EAL4 are being conducted in Europe. In fact, while the original

mutual recognition arrangement extends up to and including Evaluated Assurance Level

4 (EAL4), a set of the European nations have extended this arrangement between

themselves, such that evaluations are recognized up to and including EAL7.10 Therefore,

a vendor wishing to have a product certified at EAL7 will get more market recognition

for the evaluation by having the evaluation conducted in Europe. To obtain certification

10 See http://www.cesg.gov.uk/assurance/iacs/itsec/index.htm.

 48

http://www.cesg.gov.uk/assurance/iacs/itsec/index.htm

in the United States, he must complete a separate evaluation in one of the United States

Labs.

In an attempt to rescue the lessons learned in past high assurance development

projects, the Naval Postgraduate School is embarking on an effort to develop an open

source high assurance security kernel that offers verifiable protection. This effort will be

completely open to observation and participation and will hopefully result in an open

source product made available to be used as the foundation for any product that can be

built on top of it.

 The time for this type of project is now. We cannot afford to wait until a

devastating attack occurs at which time, the corporate knowledge gained in the building

of products that address the subversion threat may no longer exist. It is critical that those

responsible for the security of information technology systems give this threat due

consideration.

 49

THIS PAGE INTENTIONALLY LEFT BLANK

 50

LIST OF REFERENCES

Alves-Foss, J., (1998), Multi-Protocol Attacks and the Public Key Infrastructure.
Proceedings of the 21st National Information Systems Security Conference, USA, 1998,
(pp. 566-576).

James P. Anderson, (1972), Computer Security Technology Planning Study

Volume II, ESD-TR-73-51, Vol. II, Electronic Systems Division, Air Force Systems
Command, Hanscom AFB, Bedford, MA, (Oct, 1972) (NTIS No. AD-758 206).

Bell, D. & LaPadula, L. (1975), Secure Computer System: Unified Exposition and

MULTICS Interpretation, ESD-TR-75-306, rev. 1, Electronic Systems Division, Air
Force Systems Command, Hanscom AFB, Bedford, MA (DTIC AD-A023588); also
MTR-2997 Rev. 1, The MITRE Corporation, Bedford, MA 01730 (Mar. 1976).

Brinkley D., & Schell R. (1995) What is There to Worry About? An Introduction

to the Computer Security Problem. In M. D. Abrams, S. Jajodia, & H. J. Podell, (Eds.),
Information Security: An Integrated Collection of Essays (pp. 11-39). Los Alamitos:
IEEE Computer Society Press.

DOD 5200.28-STD. (1985) Department of Defense Trusted Computer Evaluation

Criteria (TCSEC).

Fellows, J., Hemenway, J., Kelem, N., & Romero, S. (1987). The Architecture of

a Distributed Trusted Computing Base. Proceedings of the 10th National Information
Systems Security Conference, USA, 1987, (pp. 68-77).

Grant, P. & Riche, R. (1983). The Eagle’s Own Plume. Proceedings of the United

States Naval Institute, July, 1983.

Karger, P. A., & Schell, R. R., (1974). MULTICS Security Evaluation:
Vulnerability Analysis, ESD-TR-74-193, Vol. II, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, MA, (June 1974).

Landoll, D., Schaefer, M., & Williams, J. (1995) Pretty Good Assurance.

Available on-line at http://www.sse-cmm.org/Papers/Pretty.pdf.

Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor,
S. Jeff Turner, & John F. Farrell (1998). The Inevitability of Failure: The Flawed
Assumption of Security in Modern Computing Environments. Proceedings of the 21st
National Information Systems Security Conference, USA, 1998, (pp. 303-314).

Meyers, P. A. (1980) Subversion: The Neglected Aspect of Computer Security.

Master’s Thesis, Naval Postgraduate School, Monterey, California, June 1980.

 51

NCSC-TG-010 Version-1. (1992) A Guide to Understanding Security Modeling
in Trusted Systems.

Parnas, D. (1972). On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM, 15(12), 1053-1058.

Schell, R., (1979). Computer Security: The Achilles’ Heel of the Electronic Air

Force. Air University Review, XXX(2), 16-33.

Schell, R., Downey, P., & Popek, G. (1973). Preliminary Notes on the design of

Secure Military Computer Systems, MCI-73-1, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, MA (January 1973).

Stevens, R. (1994) TCP/IP Illustrated, Volume 1. Boston: Addison-Wesley.

Weissman, C. (1992). BLACKER: Security for the DDN Examples of A1

Security Engineering Trades. Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, USA, 1992, 286-292.

 52

APPENDIX

This appendix provides a basic introduction to Internet protocols to aid readers in

understanding the subversion examples presented in Chapters II-IV.

The Internet is one of the most widely used and widely understood forms of

network communication. It is often described as a massive “cloud” through which

computers pass data to each other in the form of binary 1’s and 0’s modulated into an

electrical signal. The Internet uses pre-defined protocols to make communication on the

Internet proceed smoothly. The most common is the Transmission Control

Protocol/Internet Protocol (TCP/IP), which defines how these connections get

established, maintained, and torn down. Data are passed around the network

encapsulated in packets. These packets contain the data (e-mail, documents, pictures,

etc.) as well as information about the data (its origin, destination, size, etc.). This data

about the data or metadata are formed into well-defined headers. Packets are sent from

one computer to another along a path in the network. Intelligent nodes analyze

information contained in the header and decide where to send the packet next thus

determining its path through the network. Eventually, the packet arrives at a node that

knows where the destination is and the path is complete. This method of connecting one

end to another is known as packet switching. It is distinguished from circuit switching in

which a physical end-to-end connection is built by electronic circuits and remains

connected for the duration of the communication. Circuit switching is the method used in

telephone communications.

The network protocols are organized into a hierarchical layering as shown in

Figure 1. Layers of the TCP/IP Protocol. An application (such as an e-mail program

generates an e-mail message). The data that comprise this message are formed in such a

way that the e-mail program on the receiving side understands how to interpret the data

and display the message. Before the message can be sent out however, it must be formed

into a packet. So the e-mail program passes it down to the next layer which is either

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP). The difference

between TCP and UPD is not critical here, but this layer is responsible for defining which

 53

application is responsible for the datagram portion of the packet and for guaranteeing that

the information is received correctly. The packet now contains the data generated by the

e-mail program and the TCP or UDP header. This then becomes the datagram for the

next level down – the Internet Protocol IP layer, which will add the IP header. The IP

header contains, among other things, identifying information for the origin and

destination computers. After the IP layer is the Link Layer. While the IP layer gets the

packet from the origin to the ultimate destination, the link layer gets the packet from node

to node. Finally, the Physical Layer deals with the physical medium and how signals

travel through it.

A p p lic a tio n T e ln e t, F T P , e -m a il, e tc .

T ra n s p o rt

N e tw o rk

L in k

T C P , U D P

IP , IC M P , IG M P

D e v ic e d rive r a n d in te rfa c e c a rd

Figure 1. Layers of the TCP/IP Protocol Suite (from Stevens, 1994)
On the receiving end, the packet is passed up the stack in reverse order. At each

level, the header is stripped off and analyzed until the data is passed to the application

(e.g. the e-mail program that will display the e-mail message). As the packet is passed up

this stack, it is checked for integrity (in the event that a glitch causes data modification)

by comparing a filled-in the header called the checksum with the datagram portion of the

packet. If the checksum is invalid, the packet must be retransmitted (in the case of TCP),

or just discarded and forgotten about (as in the case of UDP).

The trigger in the NFS example (see Chapter II. “High Level Discussion of the

Network File Server (NFS) Experiment”) is a UDP packet with an invalid checksum of a

predefined value. When a UDP packet with a bad checksum is received by the subverted

system, it discards the packet normally, but also checks to see if the value in the

checksum field is one of the predefined triggers. If so, it triggers the artifice and then

discards the packet.

 54

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library

Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Mr. Richard Clarke

President's Critical Infrastructure Protection Board
The White House
Washington, D.C. 20504

4. Mr. Paul Kurtz

President's Critical Infrastructure Protection Board
The White House
Washington, D.C. 20504

5. Mr. Keith Schwalm

President's Critical Infrastructure Protection Board
The White House
Washington, D.C. 20504

6. Mr. Dan Porter

SECNAV DON CIO
1000 Navy Pentagon
Washington, D.C. 20350-1000

7. Mr. Dave Wennergren

SECNAV DON CIO
1000 Navy Pentagon
Washington, D.C. 20350-1000

8. VADM Richard Mayo

Chief of Naval Operations
2000 Navy, Pentagon, N6
Washington, DC 20350-2000

 55

9. Commander, Naval Security Group Command

Naval Security Group Headquarters
 9800 Savage Road
 Suite 6585
 Fort Meade, MD 20755-6585
 San Diego, CA 92110-3127

10. Ms. Deborah M. Cooper

Deborah M. Cooper Company
 P.O. Box 17753
 Arlington, VA 22216

11. Ms. Louise Davidson
 N643
 Presidential Tower 1
 2511 South Jefferson Davis Highway
 Arlington, VA 22202

12. Ms. Elaine S. Cassara
 Branch Head, Information Assurance
 United States Marine Corps
 HQMC, C4
 2 Navy Annex
 Washington, DC 20380

13. Mr. William Dawson

Community CIO Office
Washington, DC 20505

14. Ms. Deborah Phillips

Community Management Staff
Community CIO Office

 Washington DC 20505
 deborlp@odci.gov

15. CAPT Robert A. Zellman

CNO N6
 Presidential Tower 1
 2511 South Jefferson Davis Highway
 Arlington, VA 22202

 56

16. Dr. Ralph Wachter

Office of Naval Research
Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660

17. Major Dan Morris
HQMC
C4IA Branch
TO: Navy Annex
Washington, DC 20380

18. Mr. Richard Hale
 Defense Information Systems Agency, Suite 400
 5600 Columbia Pike
 Falls Church, VA 22041-3230

19. James P. Anderson

James P. Anderson Co.
 140 Morris Drive
 Ambler, PA 19002

20. Dr. Cynthia E. Irvine

Computer Science Department
Code CS/IC
Naval Postgraduate School
Monterey, CA 93943

21. Dr. Roger R. Schell
Aesec Corporation
25580 Via Cazador
Carmel, CA 93923

 57

	LIST OF ACRONYMS
	EXECUTIVE SUMMARY
	INTRODUCTION
	PURPOSE OF STUDY
	DEFINITION
	HISTORICAL BACKGROUND
	THE PROFESSIONAL ATTACKER
	CONTRAST WITH OTHER ATTACK METHODS
	WHY DECISION MAKERS SHOULD SERIOUSLY CONSIDER THE THREAT OF SUBVERSION
	OUTLINE

	HIGH LEVEL DISCUSSION OF THE NETWORK FILE SERVER (NFS) EXPERIMENT
	HIGH LEVEL CONSIDERATIONS
	General
	Selecting the Method of Subversion and the Target System
	Selecting a Suitable Attack Demonstration

	ARTIFICE DESIGN AND INTEGRATION INTO THE OPERATING SYSTEM
	Artifice Function

	THE SUBVERTED SYSTEM IN OPERATION
	CHAPTER SUMMARY

	HIGH LEVEL DISCUSSION OF SSL SUBVERSION
	OVERVIEW OF A POSSIBLE SSL SUBVERSION
	CHAPTER SUMMARY

	DETAILED DESCRIPTION OF THE NFS EXAMPLE
	LINUX IMPLEMENTATION OVERVIEW
	Artifice Implementation
	The Network File Server as a Target

	CHAPTER SUMMARY

	EVALUATING SYSTEM SECURITY IN THE FACE OF ARTIFICES
	TECHNIQUES FOR FINDING AN ARTIFICE
	Design and Implementation Phase Subversion
	Distribution, Maintenance, and Support

	PROVING THE PRESENCE OR ABSENCE OF AN ARTIFICE
	Source Code Inspection Will Fail to Reveal an Artifice
	Security Test and Evaluation (ST&E) Will Fail to Reveal an Artifice

	CHAPTER SUMMARY

	LIMITING THE RISK OF SUBVERSION IN INFORMATION SYSTEMS
	ANALYZING THE THREAT MODEL
	SOFTWARE ENGINEERING, OBEJCT-ORIENTED PROGRAMMING (OOP), AND DEVELOPMENTAL ASSURANCE APPROACHES
	VERIFIABLE PROTECTION
	Properties of Verifiable Protection
	Requirements for Verifiable Protection

	CHAPTER SUMMARY

	CONCLUSIONS AND FUTURE WORK
	INITIAL DISTRIBUTION LIST

